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１ はじめに 

前報で報告した角スタッドに対する加力実験によると、

加力レベルが低い場合は剛性がカタログ値（文献１））の断

面性能を用いた理論解と良好な一致を見るのに対し、加

力レベルが増大すると徐々に剛性が低下するという現象

が確認された。本報では仮説を導入してそれに基づいた

シミュレーション解析結果を報告する。 

 

２ 仮説 

ここでは次のような仮説を設定する。 

断面二次モーメントは作用する曲げモーメト

に比例して低減する（図 2 参照）。 

この仮説の原因として、角スタッドを構成する各面に

製作誤差及び運搬時や施工時の外力による微小な面外変

位が存在することが想定される。この面外変位の存在に

より圧縮フランジに相当する面には局所的な偏心圧縮力

による曲げ変位が生じ、その結果材軸方向に縮みが発生

する（文献 2））。この縮みが本来の圧縮力による軸歪に累

加し、見かけの断面二次モーメントの低下をもたらす。 

 

３ 定式化及び解析結果 

前記の仮説に従い、断面二次モーメントを(1)式で表記

する。その際、係数の無次元化を目的として曲げモー

メント M(x)を弾性限モーメント My で基準化している。 

IM = I0(1 – (M(x)/My) = I0(1 – ×Px/(y z)) 

= I0 (1 – ×PL/(y z)×(x/L)) = I0 (1 – ×(x/L)) (1) 

ここには本法による解析結果を実験結果に合うよう

にする最適化の目標無次元パラメータである。とは

と物性や幾何学的条件などの既知のパラメータにより次

式で与えられる。

 =×PL/(y z),     = ×L/(y z),   従って  = P 

図 1を参考に、曲げの釣り合い式は(2)式で与えられる。 

d2y(x)/dx2 = – M(x) / EIM = P x / (EI0 (1 –  x/L)) (2) 

この微分方程式を dy(L)/dx = 0,  y(0) = 0  の境界条件

で解くと(3)式が得られる（文献 3））。 

y(x) = (P / EI0)((1/( –  / L)3) [( –  / L)2x2 / 2 

–  ( –  x / L + 1){ln ( –  x / L + 1) – 1} 

–  x / L{  + ln (1 – ) } – 1] (3) 

従って中央の変位は(4)式で与えられる。 

y(L) = (PL3 / EI0) {(1/3) ln (1 – ) +(1/ 2) ln (1+/2)} (4) 

こうして求められた解析結果を実験結果と併記して図

３及び４に示す。の最適化は図の重ね書きを目視で判断

しながら実施した。最適化された各を図中に示す。 

 

４ (1)式に関する考察 

圧縮フランジのみを取り出し、角スタッドに作用する

曲げ応力の内、圧縮応力として初期不整 0(x) による偏

心軸力を受ける曲げ材としてモデル化すると、その釣り

合い方程式は図５を参照して(5)式のようになる。 

d2(Y(u) – 0(u))/du2 = – Mf(u) / EIf = – N Y(u) / EIf (5) 

この微分方程式を 2 = N/EIf を用いて、Y(0) = 0, 

 Y(2l) = 0  の境界条件で解くと(6)式が得られる。 

Y(u) = e/(1 – n) sinu (6) 

ここで、パラメータの添え字(E) は Euler 座屈時の値を

表し、n = N / NE とする。これより中央における弾性変形

量 a は(7)式で与えられる 

a = (l) = Y(l) – 0(l) = e / (1 – n) – e = e n / (1 – n) 

スタッドの静的加力実験とその解析 
（その２）角スタッドのシミュレーション解析 

図１ 曲げ解析モデル 
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図２ 断面二次モーメントの低減モデル 

I

I0

0

x

P

L

2L

日本建築学会大会学術講演梗概集 

（近畿） 2023 年 9 月 

 

—829—

1415



* * Kirii Construction Materials Co., Ltd., Dr. Eng.  

 

 e n = e N / NE    ( n << 1 )  (7) 

一方、曲げ変形に伴う節点間縮み量 ( l) による見かけ上

の軸歪 M は(8)式で与えられ（文献 2））、(9)式が得られる。 

M =  l /(2l ) = (a/(2×2l) ) 2  (8) 

M = (eN/(NE×4l)) 2 = (e/ (lNE))2 N2 = N2   (n << 1) (9) 

但し、簡単のために (e/ (lNE))2 と表記した。  

ここで定性的な傾向を見るため N >> M の範囲に注目

すると、曲げモーメント M とフランジ軸力 N の関係は、

断面係数 z とフランジの断面積 A を用いて(10)式となる。 

M(x) = f×z       N = Af = (A/z) M(x) (10) 

圧縮応力による軸応力度と軸歪度をそれぞれ N, N と

すると、各々は (11)式で与えられる。 

N = N/A,   N = N / (EA) (11) 

図６を参照し D << を考慮すると、 

0 = 2N / D = dx / 0  従って、D dx = 0×2N 

 M = (2N +M )/ D = dx/M  従って、D dx = M×(2N + M) 

この両者より D dx = 0×2N = M×(2N+M) が得られる。 

M /0 = 2N / (2N + M)  1 – M / 2N = 1 –  N2/ (2N / (EA)) 

= 1 – EA / 2) N = 1 – EA / 2) (A/z) M(x) 

= 1 – EA2 / (2z)) M(x) (12) 

ここで、M(x) = EI0 / 0 = EIM /M より 

IM = I0×M / 0 = I0 (1 – EA2 / (2z)) M(x)) (13) 

即ちモーメントによる曲げ剛性の低下分は M(x) に比例す

ることが予想され、(1)式の表現の妥当性が期待される。 

５ まとめ 

角スタッドに対する曲げ実験結果として初期剛性はカ

タログ値の断面性能を用いた剛性とよく一致しているが

加力レベルの増加に伴い剛性が徐々に低下するという特

性が得られた。この原因として高レベル加力時に圧縮フ

ランジに観察される連続波状座屈変形に注目し、低加力

レベル時でも不整偏心を原因とした偏心軸力による曲げ

変形が圧縮フランジに発生し、その効果として見かけ上

軸歪が増大すると仮定して検討した。検討に際しては定

性的な傾向をとらえるため単純化した力学モデルを想定

した。初期不整偏心量 e と曲げ剛性低下を表す指標である 

との関係を定量的に評価するためにはより詳細な解析が

必要である。そして、はランダムな初期不整量に依存す

るので個材ごとにばらつきが大きいことが予想される。 

低加力レベル時の圧縮フランジの曲げ変形の原因とし

てここでは不整偏心を想定したが、加力レベルが増大す

ると歪エネルギー最小化の法則（文献 4)）により徐々に連

続座屈モードに収束することが同様の実験結果で観察さ

れている。この現象の詳細は文献 5)で報告されている。 
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図６ 軸歪度と曲率半径の関係 
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図３ 4565 の実験結果と解析結果 図４ 45100 の実験結果と解析結果 

図５ 圧縮フランジの偏心軸加力解析モデル 
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