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FLEXURAL-TORSIONAL BUCKLING CAPACITY OF BRACE FOR ASEISMIC CEILING
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Toshio KOBAYASHI and Tomokazu ARAI

Newly developed high spec connecting parts for brace of suspended ceiling behaves as rigid body, which has one degree of freedom of yawing angle

around hanging bolt by Euler buckling of brace. This yawing angle arise torsional angle around brace axis because brace has oblique angle from

hanging bolt. Lateral loading tests for unit models were conducted and many of their ultimate damage modes were flexural-torsional buckling of

brace. Evaluation formula of flexural-torsional buckling capacity is developed based on equilibrium between external energy and strain energy.
Finally, critical brace length to flexural-torsional buckling are given for typical brace members.
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AR ORENTHOETA 9 A IRE L, Th A ERERICEN Lo
BT EN T R U AFIIC A TH S Z L 2R LT,
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Fig.1 I T 2 VB YR b 12 ATH BN 2100mm
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NBE (Photod) 2V 1), MET Y vy FICEDMA L, WhH
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Photo4 Loading Jig

Photo5 Board-Jig Connection

Table1 List of specimen

Test | Specimen | Bolt | Brace Brace Member Loading | Loading | Ceiling Member
No No Length | Span Direction | Pattem Specificatiopn
I-1 Receiver*
2 cox30x 1016 | Joist | ™™ | channel:
1 1000mm| 2 L~1.346 =
§-3 (L=1,346mmm) Receiver* Cyelic C-40X20X 1.6
14 Joist
2-1 Receiver* One Way [Joist:
22 C-60X30X 10X 16 | Joist .
2 o 2000mm| 4 (L=2,691mm) Rocoiver® — JIS25Type W-Bar
24 Joist clie 1(t=0.8)
3. Receiver* One Wa .
3 32| soomn| o | CTSXESXISX16 [ ot ne WaY |Hanger, Clip:
33 i (L=3,499mm) Receiver® | Bolt Type
- Cyclic
14 Joist
4 4-] 2000mm| 2 C-GO)E}OX 10X 1.6 Rece!vex*‘ One Way JIS19 Type
42 (L=2,193mm) Joist Hanger, Clip-
T C-60X30X 10X 1.6 ) ’
5 5.4 3000mm| 4 (L=3.499mm) Joist One Way |Bolt Type
*1: Additional Joist Just Under Brace Receiver* : Ceiling Joist Receiver

Table2 Specification of brace member

Section | Moment of Inertia of | Section -
Brace Member Area Area (Minor Axis) Modulus Qua ly.o
. ; . Material
-60X30 . . 25,52 .
C-60X30X10X1.6 207.2 ,527 1.316 SGHA00
C-75X45X 15X 1.6 295.2 87,050 3,132
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Fig.2 General Concept of Specimen (4 Span)
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Table3 Test results

Test] Specimen | Maximum | Euler Backling Critical Behavior at Maximum Load
No. No. Load (N) Load (N)*2
-1 14,925 Backling ol Connecting Bolt of Brace
| -2 12,654 18123 Deformaﬁon of Joist and Its Reciever
13 9,540 ’ Jig Capacity Limit
14 12,898 Board Bis Top Penetrate Ceiling Board
2-1 13,115 Torsional Buckling ol Brace
2 2-2 10,650 0.54] Torsional Buckling of Brace
2-3 13,140 ] Torsional Buckling of Brace
24 | |_0§4§ Torsional Buckling of Brace
3. 8,782 Tension Brace Top Slip Down
3 3-2 7,373 (4.801 Tension Brace T_op_ Sh_p Down
3-3 1,617 : Tension Brace Top Slip Down
3-4 i 8,419 Tension Brace Top Slip Down
4 4-1 8,550 ST .Board Bis Top Penetrate Ceiling Board
4-2 9,210 ’ Board Bis Top Penectrate Ceiling Board
5 5-1 4,613 4,340| Torsional Buckling of Brace

*2 . Lateral Component of Euler Buckling Load of Brace
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{ng} N [— sin ;o cos aﬂ{ 0¢0 } @
ERBLIND, ThEHELTERILT AL,
6y = ¢gsina, — ¢y =0,/sina, (2)
No = o cosag = (B, /sin ay) cos ey = B, cot ag (3)

Lo TT L—RABEVIZ no= Oocot ao RAERLINMBAEL B,
AE T, TOBRKEMITICRILL, R UNERRERRZ T
FNF—DED ENERD DT IEERET S,

4.1 Euler EROIBS
s L TEMEN L 07 L — X ORERIER I

y(x) = a - sin(nx/A) (fHL, a<<A) (4)
THxbhd (Figh), HXIL,

dy(x)/dx = a x (m/A) X cos(mx/A) (5)
DT,

(dy(x)/dx)? = (w x a/A)? x (1 + cos(2mx/A))/2 ®

LB, Figs BLU (a<<A) 2BE(
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AL, =L—A
= [ldl-As [+ (dy()/dx)?/2)dx — A
= foA(l + (ma/A)? X (1 + cos(2mx/A))/4)dx — A
= [x + ((ma/A)?/4) x (x + Asin(2mx/A) /2m)]4 — A

= A+ ma?/(4A) — A ®
= n?a%/(4A) = n?a?/(4L) (9
L,
—F., BE& &xMOERNVF—dE 10X TEX bR B,
dEg = ((El/2)(d%y/dx*)?)dx (10)
2, B s L Bim_KE— AL B
E2RTOEZANAF-EeiZ(1DR &R 5B,
Ee = [, dEg = [;(E1/2) (d2y(x)/dx®)? dx
= m*a’El/(4L3) v
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T2 ETiE bR LIHT 2K RO WSRO
J\AK, EMIZEEIR LY M) &2 EH S IFE 0L 0 ML R
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LY OHIAVWRIZAIXTEZ BN D 19,

—d*n(x)/dx® + o2dn(x)/dx = M1 /(ECyw) (18)

ZoRU Y NZEIT B8 HERO IR ERE Cu, Ca

CaxAVTUREAR D,
&) = Cy + Cy - e™ + Cy - e + (Mp/(GJ1))x (14)
ZZ, Cw: YR U EHK, Jr: V7SRl o ER.
G : EAMEMLRIK, a= Gr/(ECy)
BREM ((0) =0, d?n(0)/dx?> =0, d®n(L)/dx?=0) LY
C1=Ce=C3=0 &0, nAARDRD L H IZBLND,
100 = Mr/(G))x = no =n(L) = MsL/(Glr) (15)
IRBERANT, AU OEIE K BSUR0 L5 Ic{sh, alth
WEARNBEZRXAF-E XK TEZL BN D,
Kr = My/ng = GJz/L (16)
Ep = (1/2)Kmo® = (1/2)(G)r/LIne? amn
Euler BER D 7 — AW\, diFda LA RO SR DM 4 &
AL R 5,

nx =0e/Lx — dnlx)/dx =ne/L (18)
LY, Fig7 485135,

A3Bi? = AzA,% 4+ AB,? = A,A,% + AB? (19

A;B.% = A;A,% + AC? + BC? (20)
THDHHB,

AzA; = AzAg; + AzA (21)
{ZBWT

AzA, =7'(0dx-y'(0dx = n'(x) - y' () dx? (22)

LhoT, dxiCEALT2ROMNELRBDT,
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Fig.6 Flexural-torsional buckling mode (General view)
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dly? = (y(x) - dn(x))2 + dx? + dy? (23)
AL = [ldl, —L
AL = [F((y(X) - dn(x)/dx)?/2 + 1 + (dy/dx)?/ 2)dx — L
= [, ((y(x) " no/LI?/2)dx (= ALy)
+[,((y/dx)? /2)dx (= AL;) = AL, +AL, (24)
ZZiT, ALy : Buler JERIZ L 2 XA OWA»E (A
AL : THERHEIA LY () X2 EMOMHELE
EfRE Al IW@WHXERALT (A=L) 2B L THESZETTD
L@B)XNHELND,
AL, = f,/((y(x) -N1o/L)?/2)dx
= (nea/L)? X fOL((l — cos(2mx/L))/4)dx
= (Mea/1)%/4 x [x — L.~ sin(2mx/L) /2l
= (oa)?/(4L) (25)
R UNEEBHE Prb Buler BEE OB A M~ T, sAne Lz
H# & REERLF—D%MH (260X) 26@NRTEL LMD,
Pp X AL, = By — Pp X (Nga)?/(4L) = (1/2)(GJy/L)ne? (26)
P = 2GJy/a? @n
@D % Fig8 #HICLTRD L, R UNEERWE Pr X Euler
JEJEHRIE O Z T @I LI 5 O T, Euler JHEJERIE(QOH A
o TR UNEEWNE®PD Euler EEMEPD LV /NS b E
RUNEENEET S, £0 L E2Q)XNMLT B,

Pz > Pr — m?El/I12 > 2G}/a? — a? > 2GJL2/m?El (28)
RUNEEFEA RSO Euler EBEEIRa 3QORTEZ BN D,
a. = L x /2G]/(nED (29)

4.3 EEREH L ERIRIEL
T IC HEEE. 6L BEBRI, JIDOHTE S HHEK
JZGI TR B RAR Q & BT 5.

s FURE Q = /2G]/ (P ED (30)
IhEANDEQIXI VBDAELNS,
a. =LQ (31)

—75 ., Euler EJH & — NIZBT 5 Hi R A01L6 = dy(0)/dx = ma/L7g
DT, RUIEEISTEA T D B REEFOT
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Fig.9 Buckling mode shift from Euler type to torsional type
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Fig.10 Buckling mode shift from Euler type to torsional type

(Brace member C-40% 20X 1.6 , L = 3400)

8. = ma /L = mQ (32)
THALIL, 7V —ADKR ISXRRBAEINTRFLRWVEE 2D,
T =23 LTHWS N A EE 28 Ol AME Q) & AR
#(0.)% Table4 (2R T,

Euler FEJEIZ K 2 PRE OIS E— A > FBBPERE— A b
My (LT D & & OBIEIRIEE any & T2 &

Table4 Flexural-torsional buckling parameter of typical brace member

Section Moment Torsional Coefficient Critical Critical Buckling Angle Section Critical
Brace Member Area of Inertia  [Saint-Venant] Wagner Parameter Modulus Length
A (Minor) Iy Jr Cw Q 0c Zy Brin
mm’ mm' mm' mm’ — Radian Degree mm’ mm
CC-25 90.8 1064 80.3 [ 2.549 <10’ 0.0768 0.2411 13.82 118.6 3485
CC-19 69.7 840 34.3 [ 2.056 <10’ 0.0565 0.1775 10.17 91.7 2616
C-40x20x1.6 119.6 4643 104.9 | 1.218 X 10° 0.0420 0.1319 7.56 325.7 3028
C-25x19x5%1.0 66.4 3154 23.0| 4.984 X 10’ 0.0239 0.0750 4.30 273.5 1392
LG 60x30x10x1.6 207.2 25527 182.4 | 2.189 X 10’ 0.0236 0.0742 4.25 1316.7 2316
LG 60x30x10x2.3 287.2 33030 530.5 | 2.814 %10’ 0.0354 0.1113 6.37 1699.4 3482
LG 65x30x10x1.6 2152 26270 189.2 | 2.565 <10’ 0.0237 0.0745 4.27 1330.0 2370
LG 65x30x10x2.3 298.7 34015 550.8 | 3.308 X 10’ 0.0356 0.1117 6.40 1718.0 3561
LG 75x45%15x1.6 295.2 87050 2575 [ 1.285 Xx10° 0.0152 0.0477 2.74 3132.0 2137
LG 75x45x15x2.3 413.7 116883 753.5 | 1.709 % 10° 0.0224 0.0705 4.04 4198.2 3160

E=2.05x10° N/mm? , G=79000 N/mm?
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agy = Mg, /Pg = 0,Z/(n*El/L?) (33)
TIT, BREEL r 2 ()R TERTS
r = agy/a, = Lo,Z/(m\/2G];EI) (34)
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1o 2 s,
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Table5 Comparison of critical behavior between theory and test

Test|Specimen Critical

No. No. Brace Member Lenggih®3 4 |Critical Behavior at Maximum Load

1-1 Backling of Connecling Bolt of Brace
1-2 C-60X30X 10X 1.6 2316 o Deformation of Joist and Its Reciever
1-3 Brace Lenpth = [345 Jig Capacity Limit
1-4 Board Bis Top Penetrate (ullng BO"II’(J
21 Torsional Buckling of Brace

2 2-2 C-60>X30X 10X 1.6 216 12 Torsmnal Buckling of Brace
2-3 Brace Length =2691 : Torsional Buckling of Brace
2-4 | Torsional Buckling of Brace
3.1 Tension Brace Top Slip Down

5 | 32 C-75X45X 15X L6 07 6 ‘I'ension Brace Top_Slip Down
3-3 Brace Length = 3499 - ' Tension Brace Top Slip Down
3-4 Tension Brace Top Slip Down

4 4-| C-60X30X 10X 1.6 2316 09 Board Bis Top Pencirate Ceiling Board
42 Brace length =2193 " |Board Bis Top Penetrate Ceiling Board

5 5.1 é%i?’xiﬁzf]:ojé‘;;g 2316 1S |Torsional Buckling of Brace

*3 Critical Length from Table 4
*4 v=DBrace Length / Ciitical Length : Eq,(36)
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FLEXURAL-TORSIONAL BUCKLING CAPACITY OF BRACE FOR ASEISMIC CEILING

Toshio KOBAYASHI*' and Tomokazu ARAI**

*! Kirii Construction Materials Co,, Ltd, Dr.Eng.
*?Kirii Construction Materials Co., Ltd., MEng

Many collapse damages of suspended ceilings during recent severe earthquakes were observed. This ceiling damage
has come to draw a lot of attention. In order to assure the safety of facility users, high level aseismic design is required
for suspended ceiling. For this purpose, braces were installed between ceiling level and top of hanging bolt to transmit
lateral load of ceiling surface to structural component such as upper floor slab. Also, high level aseismic parts were
developed. In this paper, connecting parts between brace top and hanging bolt is focused. Newly developed high spec
connecting parts behaves as rigid body, which has one degree of freedom of angular displacement which is yawing angle
around hanging bolt (Fig.4) by Euler buckling of brace. This yawing angle arise torsional angle around axis of brace

because brace has oblique angle (o) from hanging bolt (Eq. 1).

Static lateral loading tests for unit models were conducted for various braces member and various length of hanging
bolts (Table 1). Their ultimate damage modes are classified into following three modes (Table 3),
(1) Flexural-torsional buckling of brace
(2) Slip of connecting parts between brace and hanging bolt along hanging bolt downwards
(3) Top of board screws penetrate board and joists separate from boards. As the results, ceiling surface cannot hold

lateral load

In this paper, ultimate damage mode (1) is focused, and evaluation formula of flexural-torsional buckling capacity is

developed based on equilibrium between external supplied energy and internal strain energy (Kq. 27). From the formula,

flexural-torsional buckling capacity is characterized by Euler buckling amplitude which is defined as ac in Eq. 29.

After Euler buckling occurred in brace and buckling amplitude was increasing according external energy was being
supplied, following two phenomena could be observed, respectively.
(1) Yielding of brace by bending moment of Euler buckling mode at Euler buckling amplitude ary which is defined in
Eq. 33
(2) Flexural-torsional buckling of brace at Euler buckling amplitude a.
(a) In the case of agy < a., flexural-torsional buckling does not occur because bending yield occur before flexural-torsional
buckling occur.

(b) In the case of agy> a., flexural-torsional buckling occur.

Following three numerical examples are shown in 4.3, Fig.8-Fig.10

Case (a) Brace member C-25x19x5x1.0 L = 2000 in which agy > ac and flexural-torsional buckling occur.

Case (b) Brace member C-40%x20%x1.6 L = 2000 in which agy < a. and flexural-torsional buckling does not occur.

Case (c) Brace member C-40x20x1.6 L = 3400 in which ag, > a, and flexural-torsional buckling occur.

Finally, critical brace length (Lmis) which satisfy agy = a. are also given in Table 4 for typical brace members. When

brace length L is shorter than Lmin, flexural-torsional buckling does not occur.

In reference 10), it was clarified that Euler buckling did not lose but maintain aseismic capacity for further load. But
flexural-torsional buckling treated in this paper lost aseismic capacity for further load as shown in Fig.s 8 and 10
Considering these situation, special attention must be paid for flexural-torsional buckling phenomena in the aseismic

design for ceiling.

(2019 4E 7 /10 FISRSZTE, 2020 412 1 1 10 BRI HsLE)
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