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1．はじめに 

耐震天井の性能高度化を目的としてブレース上部接続金

具の耐力・剛性を高くした結果、接続部周辺が局所的に剛

体的挙動をするようになったため、ブレースの Euler 座屈

が強制捩りを誘発し、その結果ブレースが曲げ捩りで終局

耐力となるケースが見られるようになった（前報その 13）。 

本報ではその現象を解析的に表現し、捩り座屈発生限界

の評価方法を提案する。 

２．エネルギーの釣り合いから求める座屈条件 

2.1 Euler 座屈の場合 

両端ピンで部材長が L のブレースの座屈形状は 

 y(x) = a sin(π/L)x   （但し、a<<L） (1) 

で与えられる。図１を参考に、 

 dl2 = dx2+dy2  

  → dl = SQRT(dx2+dy2) ≒(1+ (dy(x)/dx)2/2) dx 

を考慮し、Euler座屈による支点間の縮み量 ∆L1は 

 ∆L1＝∫dl - L =∫SQRT(dx2 + dy2) - L 

 ≒∫(1+ (dy(x)/dx)2/2) dx – L = π2a2/(4L) (2) 

となる（図１参照）。 

一方、長さ dx 間の歪エネルギーdEEは(3)式で与えられる。 

 dEE = (EI/2)(d2y(x)/dx2) 2dx (3) 

ここに、E：ヤング率、I：断面二次モーメント 

全長での歪エネルギーEEは(4)式となる。 

 EE =∫dEE =∫(EI/2)(d2y(x)/dx2) 2dx 

= π4a2 EI /(4L3) (4) 

これらを用いて、外力がなした仕事と内部歪エネルギー

の等値から Euler座屈荷重 PEが(5)式で与えられる。 

 PE×∆L1 = π4a2EI/(4L3) → PE×π2a2/(4L) = π4a2 EI/(4L3) 

 PE = π2EI /L2 (5) 

2.2 曲げ捩り座屈の場合 

ブレースの上下端とも捩りに対する反り拘束のない単純

支持の場合に、上端に強制捩り(MT)を作用させた場合の捩

り剛性を求める。 

捩りの釣り合い式は(6)式で与えられる（文献 1）参照）。 

 -d3η(x) / dx3 +α2dη(x) / dx = MT / (ECw) (6) 

この捩り角 η(x)に関する微分方程式の一般解は未定係数

C1、C2、C3を用いて(7)式となる。 

 η(x) = C1 + C2exp(αx) + C3 exp(-αx) + (MT / (GJT))x (7) 

ここに、 Cw：反り捩り定数、JT：サンブナン捩り定数、 

 G：せん断弾性係数、α= SQRT(GJT / (ECw)) 

境界条件（η(0) = 0、d2η(0)/dx2 = 0、d2η(L)/dx2 = 0）より 

C1 = C2 = C3 = 0となり、η(x) が(8)式のように得られる。 

 η(x) = (MT / (GJT))x  →  η0 = η(L) = MTL / (GJT)   (8) 

これらを用いて、捩り剛性 KTが(9)式のように得られ、捩り

による内部歪エネルギーETは(10)式で与えられる。 

 KT = MT / η0 = GJT / L (9) 

 ET = (1/2) KT η0
2 = (1/2)(GJT / L)η0

2 (10) 

Euler座屈のケースに倣い、曲げ捩り変形時の支点間の縮

み量 ∆L を求める。 

 η(x) = (η0 / L)x → dη(x) / dx = η0 / L (11) 

より、図３を参考にすると、 

 A3B1
2 = A3A1

2 + A1B1
2 = A3A1

2 + AB2  
= A3A1

2 + AC2 + BC2  (12) 

であるが、 
 A3A1 = A3A2 + A2A1 
において 
 A3A2 = η’(x) dx×y’(x) dx = η’(x)×y’(x)×dx2 
となって、dx に関して２次の微小量となるので、 
 A3A2 ⇒ 0  (dx →0) 従って A3A1 ⇒ C2C1（dx →0） 
となる。その結果、(12)式より 

 dl12 = (y(x)×dη(x))2 + dx2 + dy2 (13) 
 ∆L = ∫dl1 - L≒∫( (y(x)×dη(x)/dx)2/2+1+ (dy/dx)2/2) dx - L 

 = ∫((y(x)×η0/L)2/2)dx( = ∆L2) + ∫((dy/dx)2/2)dx ( = ∆L1) 

 = ∆L2 + ∆L1 (14) 
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図１ Euler座屈の変形モード 
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ここに、 ∆L1：Euler座屈による支点間の縮み量（前出） 
 ∆L2：頂部強制捩り(η0)による支点間の縮み量 

上記 ∆L2の積分を実行すると(15)式が得られる。 

 ∆L2 = (η0a)2/(4L)  (15) 

 捩り座屈荷重 PT も外力がなした仕事と内部歪エネルギ

ーの等値（(16)式）から(17)式で与えられる。 

 PT×∆L2 = ET →  PT×(η0a)2/(4L) = (1/2)(GJT/L)η0
2 (16) 

 PT = 2GJT/a2 (17) 

Euler座屈荷重より捩り座屈荷重が小さいとき捩り座屈が

発生する。そのとき(18)式が成立する。 

 PE > PT  → π2EI /L2 > 2GJT/a2
  → a2 > 2GJT L2/π2EI  (18) 

捩り座屈発生時の Euler座屈振幅 acは(19)式で与えられる。 

 ac = L×SQRT(2GJT/(π2 EI)) (19) 

３．臨界係数と座屈振幅比 

ここで、材料物性(E、G)と断面形状(I、JT)のみで定まる係

数 SQRT(2GJT/(π2 EI))を臨界係数 Q と定義する。 

 臨界係数 Q = SQRT(2GJT/(π2 EI)) (20) 

これを用いると(19)式より(21)式が得られる。 

 ac = LQ (21) 

Euler座屈モードにおける節点角 θは θ = dy(0)/dx = πa/L

なので、捩り座屈が発生する臨界節点角(θc)は 

 θc = πac/L = Qπ (22) 

で与えられ、ブレースの長さや設置角度には依存しない値

となる。ブレース材として用いられる主要な部材の臨界係

数(Q)と臨界節点角(θc)を表 1 に示す。 

Euler座屈による中央部の曲げモーメントが弾性限モーメ

ント MEyに達するときの座屈振幅を aEyとすると、 

 aEy = MEy / PE = σyz / (π2EI /L2)  (23) 

ここで、座屈振幅比 r を(24)式で定義する。  

 r = aEy / ac (24) 

(1) r < 1 :( aEy < ac ) の時、捩り座屈振幅acに達する前にEuler

座屈で降伏してしまうので、捩り座屈は発生しない。 

(2) r > 1 :( aEy > ac ) の時、捩り座屈振幅 acより Euler座屈降

伏振幅 aEyが大きいので、捩り座屈が発生する。 

捩り座屈発生限界( r = 1 )となる L = Lminを表 1 に示す。 

４．おわりに 

Euler座屈がブレース端部に強制捩りを誘発するようなケ

ースについて、臨界係数 Q と座屈振幅比 r を定義し、これ

らを用いて捩り座屈発生判定の試案を考察した。 
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図３ 曲げ捩り座屈の変形モード（拡大図） 

図２ 曲げ捩り座屈の変形モード（全体図） 

表１ 主要ブレース材の曲げ捩り座屈特性 
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断面2次 捩り座屈

モーメント サン･ブナン 反りねじり 限界長さ

A (弱軸) IY JT CW Q ZY Lmin

mm2 mm4 mm4 mm6 ラジアン 度 mm3 mm

CC-25 90.8 1064 80.3 2.549E+05 0.0768 0.2411 13.82 118.6 3485

CC-19 69.7 840 34.3 2.056E+05 0.0565 0.1775 10.17 91.7 2616

C-40×20×1.6 119.6 4643 104.9 1.218E+06 0.0420 0.1319 7.56 325.7 3028

AS-25 66.4 3154 23.0 1.800E+08 0.0239 0.0750 4.30 273.5 1392

LG 60×30×10×1.6 207.2 25527 182.4 8.282E+09 0.0236 0.0742 4.25 1316.7 2316

LG 60×30×10×2.3 287.2 33030 530.5 1.022E+10 0.0354 0.1113 6.37 1699.4 3482

LG 65×30×10×1.6 215.2 26270 189.2 8.984E+09 0.0237 0.0745 4.27 1330.0 2370

LG 65×30×10×2.3 298.7 34015 550.8 1.109E+10 0.0356 0.1117 6.40 1718.0 3561

LG 75×45×15×1.6 295.2 87050 257.5 8.538E+10 0.0152 0.0477 2.74 3132.0 2137

LG 75×45×15×2.3 413.7 116883 753.5 1.109E+11 0.0224 0.0705 4.04 4198.2 3160

　　　E = 2.05E+05 N/mm
2
,   G = 79000N/mm

2
,     Q = SQRT(2GJT/EI)/π, σy = 400 N/mm

2

θc
部材

断面積
ねじり定数

臨界係数 臨界節点角 断面係数
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