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１．はじめに  

耐震天井の工法の一例として、天井の地震時水平力を周

辺の間仕切壁に負担させるケースを想定し、壁の構造特性

を把握することを目的として壁に対する静的水平加力実験

を実施した。スタッドは該当階床上と上階床下に設置した

ランナーで支持することを想定した。ボードに関して天井

レベルより下部に張り、天井裏部分には張らないケースで

は天井裏のボードが張られていない部分のスタッドに捩り

現象が発生し、その結果スタッド頂部がランナー内を壁の

面内方向にすべり出す現象で壁の水平耐力が特徴付けられ

た。本報ではその現象を定式化し、すべり限界状態でのス

タッドとランナー間の摩擦係数を求め、天井からの水平力

負担に対する壁の水平耐力評価の基礎データとした。 

２．実験結果 

図１に使用スタッド WS90 と WS65 とのそれぞれの試験体

に対するジャッキ加力と加力部変位のグラフを示す。加力

中の目視によると、加力当初よりスタッド頂部には捩りが

生じていたが、加力と反対側のスタッドとランナーの接触

部(図２の P、以下同様)で滑りは発生せず、加力側のスタ

ッドとランナーの接触部(Q)で滑ることにより捩り変形が

進んだ。捩り変形の進行により捩り中心（S）が壁の面内方

向に下部固定の片持ち梁として強制変形され、その反力が

(P)部で摩擦力 FH として壁の面内方向に捩りを抑える方向

に作用する。加力が進み静摩擦限界に達すると(P)部にすべ

りが生じ、捩り変形を抑える効果が低下し捩り変形が顕著

に進行した。その結果、図 1における(*)印で一時耐力が頭

打ちとなり水平変形が顕著に進んだ。 

さらに加力を進めると全てのスタッド頂部が 90°回転

した後に再び耐力が増加し、(*)印レベルの耐力まで回復し

た後に加力位置でスタッドに局部座屈が発生し、終局に至

った。スタッドのランナーからの外れは発生しなかった。 

本報での解析は(*)印を対象としたが、(*)印で破壊が生

ずることなくエネルギー上はさらに吸収能力がある。 

３．定式化 

図２(リップを省略表示、データでは考慮)に捩りと並進

に関する各種パラメータの定義をそれぞれ分離して示す。 

スタッド頂部の捩り中心 S 周りには次の 4 種類の捩りモ

ーメントが作用している。 

M1：ジャッキ加力による変位(δf)に対するランナーから

の反力に起因する捩りモーメント（右回り） 

M2：スタッドが(P)部で滑らずに捩りが生じることにより、

捩り中心(S)が壁の面内方向に（図では右方向に）強

制変形される。その反力が(P)部で摩擦力 FHとして作

用することに起因する捩りモーメント（左回り） 

FH   = 3EIyD(sin(ξ+θ)-sinξ)/l3   (1) 

M2 = FH*Dcos(ξ+θ) 

= 3EIyD2(sin(ξ+θ)-sinξ)cos(ξ+θ)/l3 (2) 

M3：スタッドの捩り剛性による復元力（左回り） 

M3 = Kθ×θ   (Kθ：スタッドの捩り剛性) （3) 

M4：ランナーの開き(δθ)に対する抵抗力に起因する捩り

モーメント（左回り） 

M1 と M4 はランナーからスタッドに(P)部と (Q)部で作用

する力Fk+とFk-から生ずる捩りモーメントM0から次のよう

に分離される。 

M0 = Fk+*B+-Fk-*B- 

= (δθ＋δf)*k*B
+-(δθ-δf)*k*B

- 

= kδf(B
+＋B-)- kδθ(B

+-B-) 

= kδf(Dsin(ξ＋θ)+2Δsin(ζ-θ)+ Dsin(ξ＋θ)) 

-kδθ*2Δsin(ζ-θ) 

= 2kδf(Δsin(ζ-θ)+ Dsin(ξ＋θ)) (= M1) 

-2kΔ2sin(ζ-θ)(cos(ζ-θ)- cosζ) (= M4)  （4） 

ここに、k はランナーの開き加力に対するばね定数で、

WS-90 を例として図３に示す実験結果より表 1 のように求

めた。またδfはジャッキ加力に対するスタッド頂部の負担

反力ｆによるランナーの開き変形で(5)式で与えられる。 

δf = f/(2k) (5) 

スタッド頂部の捩り中心周りの捩りの釣り合い式は(6)

式となり、これをθについて解くと図 1の(*)印における捩

り角θ0が求まる。 

M1 = M2 + M3 + M4 (6) 

捩り角θ0のときの(P)部における軸力 Fk+は(7)式で、さ

らにこれと摩擦力 FH(=(1)式)とから、静摩擦係数μが(8)

式で与えられる。 

Fk+ = (δθ＋δf)*k (7) μ = FH / Fk
+ (8) 

４．解析結果 

解析に使用した各種パラメータ値と解析結果を表 1 に示

す。表中の捩りに関する各種パラメータは文献 1)を参考に

評価した。静摩擦係数を求めた結果、ＷＳ-90 で約 0.23、

ＷＳ-65 で約 0.18 となった。 
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５．おわりに 

天井の地震時水平力を周辺の間仕切壁に負担させる工法

を想定し、間仕切壁の水平加力実験を実施したところスタ

ッドの頂部で捩りが生じその増大に伴いランナー内部で壁

の面内方向に滑った。そこでこの現象を評価すべく定式化

し、静摩擦係数を求めた結果、約 0.2 となった。この値を

参考にしてスタッドの捩り耐力の評価に繋げたい。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

図１ ジャッキ加力位置の加力―変形関係 

写真１ スタッド上部の捩り変形 

表１ 解析用入力データと解析結果 

 

図３ ランナー開きばね評価実験 

(a) 試験体概要 

(b) 実験結果 (WS-90 の例) 

 

図２ スタッド頂部の変形（表記の定義） 
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(a) 回転成分 参考文献 1)  「建築の力学 －弾性論とその応用－」、

桑村仁、技報堂出版、2013 年 11 月 5 日 1 版 4 刷 

(b) 並進成分 

WS-90 WS-65

E = 2.0500E+05 2.0500E+05

Iy = 53386.0979 47512.3656

l = 1300.0000 1300.0000

e = 23.6280 25.3721

D = 50.8260 41.2310

ξ = 0.4835 0.6628

G = 7.9000E+04 7.9000E+04

Cw = 1.0241E+08 5.7045E+07

JT = 36.0107 31.7440

Kq = 31290.8489 18279.3374

Δ = 50.3115 41.2310

ζ = 0.4636 0.6055

P0 = 5800.0000 4500.0000

f = 489.3750 379.6875

k = 100.0000 80.0000

δ ｆ = 2.4469 2.3730

FH = 144.8190 103.1357

Fk+ = 640.7645 575.9766

静摩擦係数 0.2260 0.1791

θ 0 = 0.2314 0.2702

Fk- = 151.3895 196.2891

δ θ  = 3.9608 4.8267

δ ｆ = 2.4469 2.3730

δ θ +δ f = 6.4076 7.1997

δ θ -δ f = 1.5139 2.4536

M1 = 21972.1982 17516.9436

M2 = 5558.3927 2531.8022

M3 = 7240.7785 4939.1428

 M4 = 9173.0269 10045.9986

チェック -8.4977E-05 -3.676E-05

捩り剛性による復元力

m = FH/Fk+ =

耐力時ジャッキ加力

頂部反力１本分

ランナー開きばね定数

ジャッキ反力による変形

摩擦反力

加力反対側ランナー反力

Fk+によるランナーの変形

ランナーからの反力に起因

摩擦力に起因

せん断弾性係数

反り捩り定数

サンブナン捩り定数

捩り剛性

対角線半長

対角線見込み角

項目（値はN, mm, radian系）

入
力

解
析
結
果

ヤング率

断面二次モーメント

部材長

角から捩り中心距離

角から捩り中心見込み角

開き抵抗力に起因

M2 + M3 + M4 - M1 =

耐力時捩り角

加力側ランナー反力

捩りによる膨れだし変形

ジャッキ反力による変形

ウエッブから捩り中心距離

Fk-によるランナーの変形
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